
4 ACM ECHT CONFERENCE

Abstract

Multicard: An open hypermedia System

Antoine RIZK
EUROCLID,12 Ave des Pr.4s

78180 Montigny le BretonneW France
email: rizk@nuri.inria. fi, Tel: + +.33. 1.30.40.14.56, Fax: -t +33.1.30.57.18.63

Louis SAUTER
Bull LPAM, 7 rue Amp2re

Mussy 91343, France
email:L.Sauter@&my. bull. fi,Tel: + +33.1.69.93.89,64, Fax: + +33.1.69.93.76.69

This paper describes the Multicard hypermedia system

which has been developed following an open systems

approach . Multieard provides a hypermedia toolkit

that allows programmers to create and manipulate

distributed basic hypermedia structures; an interactive

authoringhavigation tool which is itself based on the

toollki~ an advanced scripting languagty a multimedia

composition editor, as well as a communication

protocol that allows the integration of various editors

and applications into a single hypermedia network.

One of Multieard’s features is that it does not itself

handle the contents of the nodes. Instead, it

eormnunieates with different editors, mming as

separate processes, using a set of messages called the

M2000 protocol. Multieard has so far been connected

in this way to around five different M2000 compliant

editors and applications ranging from a basic text

editor and data sheet to sophisticated desktop

publishing and multimedia composition systems.

M2000 mmpliant editors automatically benefit of the

Multieard linking facilities and composite structures.

Using the Multicard scripting language, M2000

compliant editors ean also annotate their contents with

scripts and communicate with each other using event
and message transmission.

Keywords: Multicard, M2000, hypermedia toolkit

Pertnission to copy without fee all or part of this material
is granted provided that copies are not made or distributed
for direct commercial advantage, the ACM copyright no-
tice and the title of the publication and its date appear,
and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise,
or to republish, requim.s a fee and/or specific permission.
@1992 ACM O-89791-547-X/92/0011 /0(X)4/ $1.50

1 Introduction

Since the appearance of the very first hypertext

systems, hypertext developers and users have called

for the necessity of developing open hypertext

systems which are simple to integrate with existing

applications. Meyrowitz[lO] and Brown[4] are

amongst the first to observe this need. Meyrowitz[lO]

called for a link serviee that all applications can use.

Brown[4] observes “if hypertext systems are to realise

their full potential, they must aim for a seamless

interface with other tools, thus making the whole

greater than the sum of the parts”. Maleolm[9] calls for

interoperability and integration as the fiist requirement

for industrial strength hypermedia : “ Systems should

be designed that enable engineers to link data created

with their own tools rather than by having to use

special hypermedia editors” .

If we look at current hypertext development, we

observe two major trends neither of which meets the

above requirements:

On the one hand, we observe the development of

hypertext systems that focus largely on the
management of hypertext objects and provide

complete Runtirne and Presentation layers (see

Dexter[8]). These systems pay relatively little
attention, given the additional cost involved, to the
Within component layer. They usually offer basic

document processing functionalities with no regards to
standards or sophistieation.

On the other hand we observe the development of

hypertext e.vtenswns to a multitude of existing

content-based applications such as word processing

packages, CAD applications, graphics tools etc. These

extensions, on the contrary, usually provide an

MILANO, NOVEMBER 30- DECEMBER 4, 1992 5

elementary linking facility between two endpoints in

the application data. There are no concept of nodes or

composites, neither of link types etc. It is this trend that

seems to be gaining support in the industrial arena

judging by the number of existing products with such

extensions, and by the emergence of hypermedia

standards such as Hytime[6] and MHEG[5].

What lacks in order for these two trends to meet, is a

clear specification of the interface between the content

oriented applications and the hypermedia management

system. In other words, a specification and

implementation of the anchoring layer of the Dexter

model both as a Iinkable API as well as a

communication protocol.

MultiCard is a complete hypermedia system in that it

offers the basic set of hypermedia objects, an
authoring,havigation tool, a scripting language and a

multimedia composition editor. The M2000

communication protocol of Multicard provides a

means for stand-alone applications, mming as

separate processes to be considered as an integral part

of the Multicard system. Applications that respect this

protocol automatically benefit of the entire Multicard

features, including scripts, linking facilities and

composite structures. MultiCard and M2000 also

provide for different such applications, a medium for

communication and cooperation through cross linking

and message/event transmission.

2 Related work

Existing open system/toolkit approaches to

hypermedia include the Sun Link Service[7], the

Hypertext Abstract Machine[12], the Andrew

Toolkit[14], the PROXHY system[15], [ntermedia

[16] and the Eggs/HOT[13] approach.

The Sun’s Link Service[7J defines a protocol for an

open hypertext system. The M2000 protocol

adopts a very similar approach to the Sun Link

Service which is probably the only system that
compares so closely to it. The Sun’s Link Service

however, provides an extremely loose coupling of

applications and stretches opemess to its limits. It

provides only for a distributed linking mechanism

and a means for representing and storing the

source and destination of the link. As the author of

Sun’s Link Service observes, there is a tension
between support for heterogeneity which is a goal
of open systems and the notion of integration. The

Sun’s Link Service modulates this tension by

defining as simple and unrestrictive a protocol as

possible.

The PROXHY systern[15] illustrates a very

advanced architecture in the open hypermedia

systems direction, in which anchors and links as

well as applications are considered as separate

actors communicating through message passing.

Considering anchors and links as processes helps

in parallelising interaction with these objects but

could be rather heavy on performance. As with the

Sun’s Link Service, the communication protocol is

minimal and unrestrictive.

With the M2000 protocol, the compliant

application benefits of the entire MultiCard features

and components including the scripting language,

object hierarchies and composites, event
propagation and the authoringlnavigation tool. In

this sense the M2000 protocol is more developed

but not as simple and unrestrictive. Editors,

however, may choose to comply with M2000 at

any depth, depending on the level of integration

required.

The Intermedia system also provides a set of

hypermedia services for applications to use.

Intermedia goes into great depth as regards policy

to which applications should adhere as well as in

managing consistency of the hypermedia webs. As

we mention later, the existence of the scripting

language in MultiCard imposes new functionalities

on the communication protocol and renders the

enforcement of presentation policies extremely

difficult.

The HAM is perhaps the first system to offer a

toolkit approach to hypertext. Whilst the HAM

implements many of the classical hypertext

features including distributed access of

nodeshmchors, attribute/value pairs, and

configuration management, the HAM does not

define a communication protocol with independent

applications. Such applications have to be tightly

linked to the HAM Toolkit. A similar argument

applies to the Eggs/HOT system, although the

integration of existing tools should be easier given

“the high degree of generality and encapsulation”

in the elements of the toolkit. The authors of

Eggs/HOT have however observed the possibility
of using process communication for their system.

6 ACM ECHT CONFERENCE

The Andrew Toolkit defines a set of linking
facilities as well as a scripting language. Whilst the

ATK is a very flexible tool for the development of
rnultimedla and hypermedia applications, the

integration of a new editorlapplication is not
possible. Such an editor has to be programmed as

an inset using the ATK Classes language.

Tlte MuMcard system is in adequacy with respect

to the Dexter model[8] in that it provides the

decomposition and the functionalities of all of the

Runtime Layer, the Storage Layer and the WMdn

component layer. The M2000 protocol goes in

greater depth into the specifimtion and

implementation of the Anchoring interface between

the Storage and the Within component layers.

3 The Multicard architecture

Thehypermedia system architecture is illustrated in

figure 1, represented as a set of components and

interfaces. The architecture is based on the general
model of front-end and back-end subsystems. It

has the following distinct layers : A set of

Hyperm~la Basic Classes that constitute the

toolki~ hypermedia distributed persistent object

storagq an authoringhavigation tool; a

communication protocol and a series of compliant

editors.

3.1 Hypermedia objects

The heart of the hypermedia toolkit is the

representation of hypermedia objects (Nodes,

Groups, Anchors and Links, Hypergraph etc...)

together with the associated interfaces to

applications, the scripting language and the editable

objects. These hypermedia objects are implemented

in C++. They can ce accessed either from C++ or

through a C binding. We recall here briefly the
spectilc features of these objects:

Nodes: In MultiCard, there is a difference between
node structure, which manages links scripts and the

content of the node : Multicard manages the node

structure, whereas the contents of the node may be

handled by different editors. The M2000 protocol

between MultiCard and the editors allows to open

and close documents, retrieve content portions

etc...

Anchors : An anchor represents a sensitive portion
of the content of a node. The associated anchor is

the hypermedia object that carries the links, scripts,

and other hypermedia properties. The sensitive

portion is editor dependent.

Groups: Groups represent logical collections of
nodes and other groups. Group hierarchy can be of

illimited depth.

Links: Contrary to the usual usage of links in

hypertext systems. Links in MultiCard are viewed

as eventimesssge communication channels between

two end points. Various messages can be sent

through a iii, including of course, the activation

message which will typically open and map the
destination object. Lii endpoints can be anchors,

nodes or groups. This way of viewing links has a

fundamental advantage in hypertext systems that
offer scripting languages in that it drastically

improves the reconfigurability of hypertext

applications.

M2000Comphant
Editors

!3+
ap ae

ma

Nc
Bdtio,

L.-InM%tlw_l
$~ Hypermedia

*3 Authoring
Tool

m
NET

Persistent Storage Platform

Figure 1: MultiCard Architecture

The link in this sense acts as a handle or as a port to

the destination object. Scripts communicate with

links given their attributes and properties that give

an indication of the type of destination object. If
the destination object is changed, the source object

script does not have to be aware of the change.

This feature has proved extremely effective in
hypertext applications that evolve constantly, and

in design of applications that require a number of
iterations before final release. Of cmrse, this

notion provides no advantage with systems that do
not offer a scripting language.

The Application programming Interface (API)

provides facilities to specflc hypermedia editors,

tools, and general applications for the creation,

MILANO, NOVEMBER 30- DECEMBER 4, 1992 7

manipulation and deletion of hypermedia objects.
l%e M2000 interface supports interaction between

hypermedia objects and the content-based editors.

3.2 Script interpreter

Nodes, Groups and Anchors may have scripts

attached to them. In this sense scripts are used as a

way of extending the behaviour of instances of

these objects. Scripts are event driven and can

communicate throughout the hypermedia

application using event/message passing. The

scripting language contains over 150 instructions

that bring the Application Interface closer to the
end-user and include special instructions for

manipulating editor contents, synchronizing with

the editor, definition of intemal/extemaI functions

etc.

The existence of a scripting language adds a

fundamental difference to the M2000 protocol

design:

i) ‘Ihe protocol has to meet the requirements for

dyruynic hypertext support[2] ;

ii)It should allow for dynamic content
manipulation;

iii) It should be extensible through scripts;

iv) It has to provide for transmission of system

events and user messages;

v) With scripts documents are active and become

part of the user interface [3]. The authoring tool of

Multicard could for example be entirely rewritten

using an editor, the M2000 protocol and the

scripting language. The provision for a specific

homogeneous user interface for protocol

manipulation across applications is therefore

umecessary.

3.3 Hypermedia persistent storage

This provides distributed persistent storage for

hypermedia basic objects and consists of two parts.

The front-end supports access by the hypermedia
basic class objects and guarantees consistent

behaviour independently of the actual storage

management implemented by the back-end. This

approach enables the storage mechanism to be

implemented using relational database or object-
oriented databaso without affecting the toolkit

interface.

3.4 Hypermedia authoring tool

The hypermedia authoring tool is an X/Motif

application written using the Hypermedia objects

AH. It allows to browse through the group

hierarchy, to interactively create hypermedia

objects (using the group editor) and to edit scripts

(using the script editor). The hypermedia authoring

tool can be used to create simple hypermedia

applications. The author creates groups and nodes,

edits the contents of the nodes using an M2000

compliant editor, creates anchors and links and

optionally writes scripts to determine how objects
react to certain events.

More complex applications can be implemented:

- by first writ~g external procedures (e.g. in C)

that can be linked with the hypermedia authoring

tool, and can be called from the scripts, and then

proceeding as above.

- by writing a new application, independent of the

hypermedia authoring tool. Typical applications of

this kind include program driven on-line help

systems, expert system driven maintenance tools

etc

4 The M2000 protocol

4.1M2000 compliant editors

As mentioned above, M2000 compliant editors are

used to manage the content portion of nodes. When

an application creates a new node, it must indicate

which editor will be used to manage the node

eontent. From then on, the appropriate editor will

be activated whenever the node is to be displayed.

Many editors have so far been rendered M2000

compliant. These include the Multicard specific

multimedia composition editor MCEditor, emacs,

the GODraw graphics editor and the

Raphael/Balzac desktop publishing system of

Bull.

Editors can provide various levels of support for

the M2000 protocol; the minimum M2000 support

consists in handling two requests (Open and Close

Node) and sending an error message for all other

requests. Each hypermedia node structure
(handled by the hypermedia toolkit) contains the
name of the editor that is to be used to edit the

corresponding document.

8 ACM ECHT CONFERENCE

Multicard doesnot define theuser interface for the

editors editors are free to use any style of

presentation. The format inwhich thecontents are

stored is also editor dependent. Inorder to manage

node deletion more consistently, Multicard

suggests the path of a directory in which the
document may be stored. This path is passed to the

editor every time the document is opened.

4.2 Sensitive areas and anchors

Interactive multimedia applications developed

using Multicard allow, for example, to trigger

actions by clicking on some part of a picture, What

actually happens is this:

- The editor detects a mouse click in a predefmed

area in the picture;

- It sends information about the mouse click to the

MultiCard object representing the sensitive are%

- MultiCard handles the event by executing the

MultiCard object’s script.

The parts of documents that can trigger actions are

called sensitive areas. The properties of sensitive

areas (geometry, kind of events captured etc ...)

are the sole responsibility of the content editor. An

anchor is a hypermedia object associated to a

sensitive area. Events (Mouse click, key events ...)

occuring inside a sensitive area are sent to the

corresponding anchor. MultiCard manages the

semantics (links, scripts , ...) as well as the storage

of anchors.

Each anchor has a unique identifier, delivered by

MultiCard when the anchor is created, and which

must be stored by the editor for future reference

together with the properties of the sensitive areas. It

is entirely up to the editor to determine what
constitutes a sensitive area, this could be a hot spot

or hot word, a graphical object, a push button or
slider bar, a datasheet cell or any collection of

these. Mo;eover, a sensitive area does not have to

be a contiguous piece of information in its physical
representation.

Editors should support two modes : AuthorModein
which the user can edit the contents of the

document, select objects, add or remove anchors,

etc. and ReaderModewhere most user actions are

sent as M2000 messages if they occur inside the

region of an anchor, and are ignored otherwise.

4.3 The M2000 Library

The M2000 protocol can operate with any editor

whether mming under the X-Window system or

not and regardless of the user interface the editor

might have. At connection setup, an editor using

the X-lib initializes the M2000 by providing its

context, name, a call-back function for receiving

the M2000 requests, and the maximum number of

connections it can handle. Editors not using the X-

window provide a list of various streams from

which they could handle input.

Once the comection is established, the editor

communicates with the hypermedia system by

exchanging a set of messages. T’hese can be

grouped into two main classes:

Multicard messages

These are requests sent by MultiCard when some
action is to be performed by the editor. These in

turn can be classified as:

i) Requests concerning nodes : Open, Close, Print

Save, Get/Set Property(background color, page

scroll etc .), Search for Text etc;

ii) Requests concerning anchors : Create Delete,

Map .,. These are used only via scripts to
manipulate anchors dynamically ;

iii) Requests concerning editable objects : Create,

Cut/Paste, Select zone, Get/Set object properties,

Set focus etc. MultiCard supports four ways for

referring to editable objects in a document : By

editable object id if the editor manages persistent

identifiers, by name, by position and by anchor.

The latter refers to the editable object containing

the anchor.

iv) Requests concerning menu management :

These requests allow scripts to modify the menu

bar for each document in Reader/Author mode.

Such messages may request the editor to

Add/Remove/Activate/Deactivate a given
menu/menu item and to Hide/Show the menu bar.

Editors can choose to respect M2000 at any level,

provided this is done in a consistent manner.

Should an editor require special extensions to
M2000, this could be done through a specific

message that takes a simple string as argument to

be processed as a series of commands. The content

MILANO, NOVEMBER 30- DECEMBER 4, 1992 9

of the string and the manner in which it is

processed are editor dependent.

Editor messazes

These are messages sent by the editor when an

action is to be performed by Multicard. They in

turn can be classified as:

i) Replies to above Multicard requests;

ii) Messages containing the notification of events

such as mouse events, focus events and menu
events. Menu events are sent to MultiCard when the
user selects a menu item. In most cases, this is

optional, but doing so will allow application

authors to tailor the behaviour of the used editors.

In Multicard, the editor is responsible for

providing the user interface for manipulating

anchors (Delete, Create, Select, EditScript, ...) and

optionally for the manipulation of nodes (Open,

Close, Save, Delete...). Such user interface

commands are sent as specflc menu events to

MultiCard. A typical session for creating an anchor
would be:

-The user marks some region in the

document as sensitive area and chooses “create

anchor” in the editor menw,

-The editor sends a CreateAnchor-

MenuEvent to the hypermedia system;

-The ,hypermedia system creates a new

anchor and sends a CreateAnchor request to the

editor with the new anchor id;

-If the editor receives a valid

CreateAnchor request, it updates its contents to
include the new anchor id. Its future messages
concerning this anchor will include the anchor id as

parameter.

5 Conclusions

This paper has described the Multicard system and
the M2000 communication protocol. Although

MultiCard offers a complete set of fimctionalities

for the development of classical hypermedia

applications in a stand-alone fashion, 4 out of 5

Multicard users develop access to M2000 and use
the provided API in order to integrate their specific

functions and tools. Full compliance with M2000

requires on average two to four weeks of

development effort. However, editors and
applications can choose to mmply with M2000 at
any depth depending on the level of integration

required.

MultiCard is now being used for research as well as

for real applications at many sites throughout

Europe.

Real applications include the development of an

online help system integrated to a France T6k5com

network control service, an estate department

imagery application, a multimedia presentation
server etc...

Research and development experiments include

integration of Multicard with the object-oriented

databases ONTOS and 02 (at Bull and INRIA-

Rocquencourt respectively), design and

implementation of a graph-based query

language[l], experimenting with multimodal user

interfaces for hypertext (at INRIA Grenoble),

porting on the distributed object-oriented ANSA

platform (STC Great Britain), Integration with the
Knowledge Engineering System Luigi (at AEG

Germany) and the development of MHEG

compatible convertors (Euroclid France).

Acknowledgments

Multicard is the result of four years of team effort

within the Esprit project Multiworks. The

following team members have directly contributed

to the design and development of Multicard :

Gianlucca Pancaccini, David Price, Fran@is

l%orel, Li Xiang Ru, Maria Ahedo, Philippe

Dagaud, Nour Didi and Rama Krishna Reddy,

References

[1] Amman B., and Scholl M., Gram: A Graph

Data Model and Query Language, in Proc.

ACM Conference on Hypertat ECHT’92,

Milan 1992.

[2] Bieber M., Issues in Modelling a Dynamic

Hypertext Interface, h ACM Hypertext’91

Proceedings, San Antonw, December 1991. pp.

203-218,

[3] Bier E., Goodisman A, Documents as User
Interfaces, in pvaeedin~s of Electmnie

Fubhkhing EF90, Ed. Furuta R., Carnbrige

University Press, 1990. pp 277-290.

10
ACM ECHT CONFERENCE

[4] Brown P., A Hypertext System for UNIX,

Computing Systems, Vol. 2, No. 1, Winter 1989.

pp.37-53.

[5] ISO/IEC JTC/SC2WG12,working document :
“Coded Representation of Multimedia and

Hypermedia Information”.

[6]1S0 10744 Hyperrnediwl%ne-based structuring

Langwage (HyTme), ISO Standard.

[7] Pearl, A. Sun% Link Service: A Protocol for

open Linking. Zn Hypertext’89, ACM,

Pittsburgh Pa., November 5-7, 1989, pp.

137-146.

[8] Halasz, F. and Schwartz, M. The Dexter

Hypertext Reference Model. h Proceedings of

the Hyperfext Standardisation Workshop, J.

Moline, D. Benigni, and J. Baronas, Eds.,
National Institute of Standards and
Technology, Gaithersburg, MD 20899, January

16-18,1990, pp. 95-133,

[9] Malcolm K., Poltrock S., Schuler D., Industrial

Strength Hypermedia Requirements for a

Large Engineering Enterprise, ACM
Hypertext’91 Proceedings, San Antonw,

December 1991. pp13-24.

[10] Meyrowitz N., The Missing Link Why we are

all doing it wrong, position paper,

Hypertext’87, Univ. of North Carolina, 1987.

[11] Meyrowitz N., Hypertext Does It Reduce

Cholesterol Too?, Hypertmt’89 invited paper,

Pittsburgh PA., November 1989, IRIS

Technical report 89-9, Brown University,

Providence, RI, 1989.

[12] Campbell, B. and Goodman, J.M. HAM A

General-purpose Hypertext Abstract Machine.
In Hypertat’87 Papers, Chapel Hill, NC,
November 13-15,1987, pp21-32.

[13] Puttress J.J. and Guimaraes N.M., The Toolkit

Approach to Hypermedia, in European
Conference on Hypertext ECHT’90, eds. Rizk

A,, Streitz N. and Andr6 J., Cambridge

University Press, 1990, pp. 25-37.

[14] Sherman M., Hansen W., McInemy M. and
NeuenDorffer T. Building Hypertext on a

Multimedia Toolkit, in European Conference
on Hypertext ECHT’90, eds. Rizk A., Streitz N.

and Andr6 J., Cambridge University Press,
1990, pp. 13-24.

[15] Kacmar C. J. and Leggett J. J., PROXHY: A

Process-Oriented Extensible Hypertext
Architecture, ACM Transactions on

Information Systems, Vol. 9, No. 4, October

1991, pp. 399-419.

[16] Haan B. J,, Kahn P. , Riley V. A. , Coombs J.

H., Meyrowitz N. K. , IRIS Hypermedia
Services, C’ACM, January 1992, Vol. 35, No.1,

pp 36-51.

